论文标题
在与SP(N-1)\子集SL(N)有关的模块类别上
On module categories related to Sp(N-1) \subset Sl(N)
论文作者
论文摘要
让$ v = \ c^n $带有$ n $奇数。我们构造了$ \ end_ {sp(n-1)}(v^{\ otimes n})$的$ q $ -deformation,其中包含$ \ end_ {u_q \ sl_n}(v^{\ otimes n})$。它是抽象的两变量代数的商,它是通过向Hecke代数$ H_N $的生成器添加一个生成器来定义的。这些结果表明存在$ rep(U_Q \ sl_n)$的模块类别,这些模块类别可能不是来自$ u_q \ sl_n $的已知的螺旋subgebras。此外,我们还指出了如何将其用于构建相关融合张量类别的模块类别以及子因子,并沿着夹杂物的先前工作$ sp(n)\ subset sl(n)$构建模块类别。
Let $V=\C^N$ with $N$ odd. We construct a $q$-deformation of $\End_{Sp(N-1)}(V^{\otimes n})$ which contains $\End_{U_q\sl_N}(V^{\otimes n})$. It is a quotient of an abstract two-variable algebra which is defined by adding one more generator to the generators of the Hecke algebras $H_n$. These results suggest the existence of module categories of $Rep(U_q\sl_N)$ which may not come from already known coideal subalgebras of $U_q\sl_N$. We moreover indicate how this can be used to construct module categories of the associated fusion tensor categories as well as subfactors, along the lines of previous work for inclusions $Sp(N)\subset SL(N)$.