论文标题
输入相关性阻碍了平衡费率网络中混乱和学习的抑制
Input correlations impede suppression of chaos and learning in balanced rate networks
论文作者
论文摘要
神经回路表现出复杂的活性模式,无论外部刺激都会自发地诱发。神经回路中的信息编码和学习取决于随时间变化的刺激能够控制自发的网络活动。我们表明,在平衡状态下的点火率网络中,复发动力学的外部控制,即抑制内部生成的混沌变异性,在很大程度上取决于输入中的相关性。平衡网络的一个独特功能是,由于常见的外部输入是通过反复反馈动态取消的,因此抑制具有独立输入的混乱比通过共同输入更容易。为了研究这种现象,我们开发了一种非平稳动态平均场理论,该理论决定了活动统计和最大的Lyapunov指数如何取决于输入的频率和振幅,共同输入和独立输入的输入,复发耦合强度和网络大小。我们还表明,无关的输入有助于平衡网络中的学习。
Neural circuits exhibit complex activity patterns, both spontaneously and evoked by external stimuli. Information encoding and learning in neural circuits depend on how well time-varying stimuli can control spontaneous network activity. We show that in firing-rate networks in the balanced state, external control of recurrent dynamics, i.e., the suppression of internally-generated chaotic variability, strongly depends on correlations in the input. A unique feature of balanced networks is that, because common external input is dynamically canceled by recurrent feedback, it is far easier to suppress chaos with independent inputs into each neuron than through common input. To study this phenomenon we develop a non-stationary dynamic mean-field theory that determines how the activity statistics and largest Lyapunov exponent depend on frequency and amplitude of the input, recurrent coupling strength, and network size, for both common and independent input. We also show that uncorrelated inputs facilitate learning in balanced networks.