论文标题
揭示钙钛矿太阳能电池的掺杂密度及其对设备性能的影响
Revealing the doping density in perovskite solar cells and its impact on device performance
论文作者
论文摘要
传统的无机半导体可以以高精度电子掺杂。相反,关于金属 - 大卤化物钙钛矿中电子掺杂密度的评估仍然存在猜想,更不用说其对照了。本文提出了一种多方面的方法,用于确定各种二个不同铅甲烷钙钛矿系统的电子掺杂密度。光学和电气表征技术包括强度依赖性和瞬态光致发光,交流霍尔效应,转移长度方法以及电荷提取测量值对量化掺杂密度的上限有助于。随后将所获得的值与短路条件下每单位音量电极的充电进行比较,大约$ 10^{16} $ cm $ $^{ - 3} $。该图等于电容$ c $的产物和内置的潜在$ v_ \ mathrm {bi} $,代表了关键限制,以下掺杂诱导的费用不会影响设备性能。实验结果表明,掺杂密度低于此关键阈值($ <10^{12} $ cm $^{ - 3} $,这意味着所有常见的基于铅的铅基金属 - halide perovskites $ <cv_ \ cv_ \ mathrm {birm {bi} $)。然而,尽管掺杂诱导的电荷的密度太低,无法重新分布钙钛矿活性层中的内置电压,但移动离子的存在足够数量,以在活性层中创建空间充电区域,以使人联想到掺杂的PN缝合。这些结果得到了漂移扩散模拟的好支持,这些模拟证实了设备性能不受如此低掺杂密度的影响。
Traditional inorganic semiconductors can be electronically doped with high precision. Conversely, there is still conjecture regarding the assessment of the electronic doping density in metal-halide perovskites, not to mention of a control thereof. This paper presents a multifaceted approach to determine the electronic doping density for a range of different lead-halide perovskite systems. Optical and electrical characterisation techniques comprising intensity-dependent and transient photoluminescence, AC Hall effect, transfer-length-methods, and charge extraction measurements were instrumental in quantifying an upper limit for the doping density. The obtained values are subsequently compared to the charge on the electrodes per unit volume at short-circuit conditions, which amounts to roughly $10^{16}$ cm$^{-3}$. This figure equals the product of the capacitance $C$ and the built-in potential $V_\mathrm{bi}$ and represents the critical limit below which doping-induced charges do not influence the device performance. The experimental results demonstrate consistently that the doping density is below this critical threshold ($<10^{12}$ cm$^{-3}$ which means $<CV_\mathrm{bi}$ per unit volume) for all common lead-based metal-halide perovskites. Nevertheless, although the density of doping-induced charges is too low to redistribute the built-in voltage in the perovskite active layer, mobile ions are present in sufficient quantities to create space-charge-regions in the active layer, reminiscent of doped pn-junctions. These results are well supported by drift-diffusion simulations which confirm that the device performance is not affected by such low doping densities.