论文标题
小四肢和长身:各种蜥蜴运动的几何力学
Coordinating tiny limbs and long bodies: geometric mechanics of diverse undulatory lizard locomotion
论文作者
论文摘要
尽管通常有四肢和短身体,但蜥蜴已经发展出各种各样的身体计划,从矮小的,完全限制到延长和几乎有限的束缚。假设人体形态上的这种多样性被认为是对运动杂乱的陆地环境的适应,但是推进模式(例如,使用身体和/或四肢与底物相互作用),潜在的身体/肢体坐标仍然没有研究。在这里,我们使用生物学实验,运动的几何理论和机器人物理实验,以相对和系统地研究各种蜥蜴形态样本中的这种动力学。对全limb,伸长蜥蜴(木乳核)和实验室研究的运动现场研究(UMA Scoparia和Sceloporus olivaceus)以及有限的侧向起伏的生物体(Chionactis ocpipitalis)表明,身体波动力学可以通过旅行和站立式海浪组合来描述身体波动动力学的结合;这些成分的幅度比例与肢体长度成反比。我们使用几何理论来分析和解释波动动力学和身体腿的配位观测。该理论预测,腿推力会调节体重分布和自我刺激的产生机制,从而促进了体波的选择。我们通过调节地面穿透性耐药性以及受控的非生物实验,涉及涉及起伏的light型固定机器人物理模型,通过调节地面穿透性耐药性以及受控的非生物实验中诱导行动波的使用来检验我们在生物实验中的假设。我们的模型对于理解蜥蜴伸长和肢体减少的进化过程的功能约束以及推进机器人设计的进化过程可能很有价值。
Although typically possessing four limbs and short bodies, lizards have evolved a diversity of body plans, from short-bodied and fully-limbed to elongate and nearly limbless. Such diversity in body morphology is hypothesized as adaptations to locomotion cluttered terrestrial environments, but the mode of propulsion -- e.g., the use of body and/or limbs to interact with the substrate -- and potential body/limb coordination remain unstudied. Here, we use biological experiments, a geometric theory of locomotion, and robophysical experiments to comparatively and systematically investigate such dynamics in a diverse sample of lizard morphologies. Locomotor field studies in short-limb, elongated lizards (Brachymeles) and laboratory studies of full-limbed lizards (Uma scoparia and Sceloporus olivaceus) and a limbless laterally undulating organism (Chionactis occipitalis) reveal that the body wave dynamics can be described by a combination of traveling and standing waves; the ratio of the amplitudes of these components is inversely related to limb length. We use geometric theory to analyze and explain the wave dynamics and body-leg coordination observations; the theory predicts that leg thrust modulates the body weight distribution and self-propulsion generation mechanism, which in turn facilitates the choice of body waves. We test our hypothesis in biological experiments by inducing the use of traveling wave in stereotyped lizards by modulating the ground penetration resistance, as well as in controlled non-biological experiments involving an undulating limbed robophysical model. Our models could be valuable in understanding functional constraints on the evolutionary process of elongation and limb reduction in lizards, as well as advancing robot designs.