论文标题

光谱,概率和深度度量学习:教程和调查

Spectral, Probabilistic, and Deep Metric Learning: Tutorial and Survey

论文作者

Ghojogh, Benyamin, Ghodsi, Ali, Karray, Fakhri, Crowley, Mark

论文摘要

这是有关公制学习的教程和调查论文。算法分为光谱,概率和深度度量学习。我们首先是从距离度量,马哈拉氏症距离和广义的Mahalanobis距离开始的开始。在光谱方法中,我们从使用数据分散的方法开始,包括第一光谱度量学习,Fisher判别分析的相关方法,相关组件分析(RCA),判别组件分析(DCA)和Fisher-HSIC方法。然后,涵盖了大量净边缘度量学习,不平衡的度量学习,本地线性指标适应和对抗性度量学习。我们还解释了在特征空间中用于度量学习的几种内核光谱方法。我们还介绍了关于Riemannian歧管的几何度量学习方法。在概率方法中,我们从输入和特征空间中的崩溃类开始,然后解释邻里组件分析方法,贝叶斯公制学习,信息理论方法以及度量学习中的经验风险最小化。在深度学习方法中,我们首先介绍重建自动编码器和指标学习的监督损失功能。然后,解释了暹罗网络及其各种损失功能,三胞胎开采和三重态采样。还综述了基于Fisher判别分析的深层判别分析方法。最后,我们介绍了多模式深度度量学习,神经网络的几何度量学习以及几乎没有射击的度量学习。

This is a tutorial and survey paper on metric learning. Algorithms are divided into spectral, probabilistic, and deep metric learning. We first start with the definition of distance metric, Mahalanobis distance, and generalized Mahalanobis distance. In spectral methods, we start with methods using scatters of data, including the first spectral metric learning, relevant methods to Fisher discriminant analysis, Relevant Component Analysis (RCA), Discriminant Component Analysis (DCA), and the Fisher-HSIC method. Then, large-margin metric learning, imbalanced metric learning, locally linear metric adaptation, and adversarial metric learning are covered. We also explain several kernel spectral methods for metric learning in the feature space. We also introduce geometric metric learning methods on the Riemannian manifolds. In probabilistic methods, we start with collapsing classes in both input and feature spaces and then explain the neighborhood component analysis methods, Bayesian metric learning, information theoretic methods, and empirical risk minimization in metric learning. In deep learning methods, we first introduce reconstruction autoencoders and supervised loss functions for metric learning. Then, Siamese networks and its various loss functions, triplet mining, and triplet sampling are explained. Deep discriminant analysis methods, based on Fisher discriminant analysis, are also reviewed. Finally, we introduce multi-modal deep metric learning, geometric metric learning by neural networks, and few-shot metric learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源