论文标题

Spin-1 Kitaev链中的量子多体疤痕

Quantum Many-Body Scars in Spin-1 Kitaev Chains

论文作者

You, Wen-Long, Zhao, Zhuan, Ren, Jie, Sun, Gaoyong, Li, Liangsheng, Oleś, Andrzej M.

论文摘要

为了提供量子疤痕的物理例子,我们研究了Spin-1 Kitaev链中的多体疤痕,其中所谓的PXP哈密顿量完全嵌入了光谱中。关于保守的数量,将希尔伯特空间分散成断开的子空间,我们探索了相关的受约束动力学。当以$ \ vert \ mathbb {z} _k \ rangle $($ k = 2,3 $)制备初始状态时,保真度和纠缠熵的连续复兴($ k = 2,3 $)说明了PXP模型的基本物理。我们使用密度 - 矩阵恢复归一化组和Lanczos精确对角线化方法研究了一维自旋-1 Kitaev-Heisenberg模型中的量子相变,并确定相图。我们以角度$ ϕ $为单词,在kitaev术语为$ k \ equiv \ sin(ϕ)$,并与Heisenberg $ j \ equiv \ cos(ϕ)$项竞争。一个人发现富含角度的基态相图作为角度$ ϕ $的函数。根据比率$ k/j \ equiv \ tan(ϕ)$的比率,系统要么将对称性打破到不同的对称损坏相位之一,要么将对称性保留在具有沮丧相互作用的量子旋转液相中。我们发现,疤痕状态对于服从$ \ mathbb {z} _2 $ -SMYMEMETRY的扰动是稳定的,而它对Heisenberg-type扰动变得不稳定。

To provide a physical example of quantum scars, we study the many-body scars in the spin-1 Kitaev chain where the so-called PXP Hamiltonian is exactly embedded in the spectra. Regarding the conserved quantities, the Hilbert space is fragmented into disconnected subspaces and we explore the associated constrained dynamics. The continuous revivals of the fidelity and the entanglement entropy when the initial state is prepared in $\vert\mathbb{Z}_k\rangle$ ($k=2,3$) state illustrate the essential physics of the PXP model. We study the quantum phase transitions in the one-dimensional spin-1 Kitaev-Heisenberg model using the density-matrix renormalization group and Lanczos exact diagonalization methods, and determine the phase diagram. We parametrize the two terms in the Hamiltonian by the angle $ϕ$, where the Kitaev term is $K\equiv\sin(ϕ)$ and competes with the Heisenberg $J\equiv\cos(ϕ)$ term. One finds a rich ground state phase diagram as a function of the angle $ϕ$. Depending on the ratio $K/J\equiv\tan(ϕ)$, the system either breaks the symmetry to one of distinct symmetry broken phases, or preserves the symmetry in a quantum spin liquid phase with frustrated interactions. We find that the scarred state is stable for perturbations which obey $\mathbb{Z}_2$-symmetry, while it becomes unstable against Heisenberg-type perturbations.\\ \textit{Accepted for publication in Physical Review Research}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源