论文标题

学会最大程度地减少监督学习中的其余部分

Learning to Minimize the Remainder in Supervised Learning

论文作者

Luo, Yan, Wong, Yongkang, Kankanhalli, Mohan S., Zhao, Qi

论文摘要

深度学习方法的学习过程通常会在多个迭代中更新模型的参数。每次迭代都可以看作是泰勒串联扩展的一阶近似。其余的由高阶术语组成,通常在学习过程中为简单而忽略。该学习方案赋予了各种基于多媒体的应用程序,例如图像检索,推荐系统和视频搜索。通常,多媒体数据(例如,图像)是富含语义的且高维的,因此近似值的剩余可能是非零的。在这项工作中,我们认为其余的内容是有益的,并研究了它如何影响学习过程。为此,我们提出了一种新的学习方法,即梯度调整学习(GAL),以利用从过去的训练迭代中学到的知识来调整香草梯度,以便将其余部分最小化并改善近似值。所提出的GAL是模型和优化器,不合命的,并且很容易适应标准学习框架。通过最先进的模型和优化器对三个任务,即图像分类,对象检测和回归进行评估。实验表明,提出的GAL始终增强了评估的模型,而消融研究验证了所提出的GAL的各个方面。该代码可在\ url {https://github.com/luoyan407/gradient_adjustment.git}获得。

The learning process of deep learning methods usually updates the model's parameters in multiple iterations. Each iteration can be viewed as the first-order approximation of Taylor's series expansion. The remainder, which consists of higher-order terms, is usually ignored in the learning process for simplicity. This learning scheme empowers various multimedia based applications, such as image retrieval, recommendation system, and video search. Generally, multimedia data (e.g., images) are semantics-rich and high-dimensional, hence the remainders of approximations are possibly non-zero. In this work, we consider the remainder to be informative and study how it affects the learning process. To this end, we propose a new learning approach, namely gradient adjustment learning (GAL), to leverage the knowledge learned from the past training iterations to adjust vanilla gradients, such that the remainders are minimized and the approximations are improved. The proposed GAL is model- and optimizer-agnostic, and is easy to adapt to the standard learning framework. It is evaluated on three tasks, i.e., image classification, object detection, and regression, with state-of-the-art models and optimizers. The experiments show that the proposed GAL consistently enhances the evaluated models, whereas the ablation studies validate various aspects of the proposed GAL. The code is available at \url{https://github.com/luoyan407/gradient_adjustment.git}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源