论文标题

基于层次神经网络计划者的物理意识到的安全性设计

Physics-Aware Safety-Assured Design of Hierarchical Neural Network based Planner

论文作者

Liu, Xiangguo, Huang, Chao, Wang, Yixuan, Zheng, Bowen, Zhu, Qi

论文摘要

神经网络在计划,控制和基于学习的网络物理系统(LE-CPS)方面表现出了巨大的承诺,尤其是在复杂方案下改善绩效方面。但是,正式分析基于神经网络的规划人员在确保系统安全方面的行为非常具有挑战性,这极大地阻碍了他们在自动驾驶等安全至关重要领域中的应用。在这项工作中,我们提出了一个基于层次的神经网络计划者,该计划者分析了系统的基本物理场景,并学习了具有多种特定方案的运动规划策略的系统级行为计划方案。然后,我们开发了一种有效的验证方法,该方法结合了系统状态可达到的集合以及新颖的分区和工会技术,以正式确保在我们的物理意见计划者下进行系统安全。通过理论分析,我们表明,基于此类分析的不同物理场景并构建层次计划者可以提高系统安全性和可验证性。我们还凭经验证明了我们的方法的有效性及其优于其他基准的优势在无保护的左转和高速公路合并的实际案例研究中,这是自动驾驶中的两项普遍挑战性的关键安全任务。

Neural networks have shown great promises in planning, control, and general decision making for learning-enabled cyber-physical systems (LE-CPSs), especially in improving performance under complex scenarios. However, it is very challenging to formally analyze the behavior of neural network based planners for ensuring system safety, which significantly impedes their applications in safety-critical domains such as autonomous driving. In this work, we propose a hierarchical neural network based planner that analyzes the underlying physical scenarios of the system and learns a system-level behavior planning scheme with multiple scenario-specific motion-planning strategies. We then develop an efficient verification method that incorporates overapproximation of the system state reachable set and novel partition and union techniques for formally ensuring system safety under our physics-aware planner. With theoretical analysis, we show that considering the different physical scenarios and building a hierarchical planner based on such analysis may improve system safety and verifiability. We also empirically demonstrate the effectiveness of our approach and its advantage over other baselines in practical case studies of unprotected left turn and highway merging, two common challenging safety-critical tasks in autonomous driving.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源