论文标题
伍德尔猜想
Disproof of a Conjecture by Woodall
论文作者
论文摘要
在2001年,伍德尔(Woodall)猜想,对于每对整数$ s,t \ ge 1 $,所有图形都没有$ k_ {s,t} $ - 小调是$(s+t-1)$ - 可chosable。在此注释中,我们以强烈的形式反驳该猜想:我们证明,对于每一个选择,$ \ varepsilon> 0 $和$ c \ ge 1 $都存在$ n = n(\ varepsilon,c)\ in \ mathbb {n} $,以使所有Integers $ s,t $ s,t $ s,t $ n \ n \ n \ le l t \ le t \ le t \ le t \。 $ k_ {s,t} $ - 未成年人列出大于$(1- \ varepsilon)(2s+t)$的色度数。
In 2001, Woodall conjectured that for every pair of integers $s,t \ge 1$, all graphs without a $K_{s,t}$-minor are $(s+t-1)$-choosable. In this note we refute this conjecture in a strong form: We prove that for every choice of constants $\varepsilon>0$ and $C \ge 1$ there exists $N=N(\varepsilon,C) \in \mathbb{N}$ such that for all integers $s,t $ with $N \le s \le t \le Cs$ there exists a graph without a $K_{s,t}$-minor and list chromatic number greater than $(1-\varepsilon)(2s+t)$.