论文标题
安全驱动的互动计划,用于基于神经网络的车道变化
Safety-driven Interactive Planning for Neural Network-based Lane Changing
论文作者
论文摘要
基于神经网络的驾驶计划者在改善自动驾驶的任务绩效方面表现出了巨大的承诺。但是,确保具有基于神经网络的组件的系统的安全,尤其是在密集且高度交互式的交通环境中,这是至关重要的,但又具有挑战性。在这项工作中,我们为基于神经网络的车道更改提出了一个安全驱动的互动计划框架。为了防止过度保守计划,我们确定周围车辆的驾驶行为并评估其侵略性,然后以互动方式相应地适应了计划的轨迹。如果在预测的最坏情况下,即使存在安全的逃避轨迹,则自我车辆可以继续改变车道;否则,它可以留在当前的横向位置附近或返回原始车道。我们通过广泛而全面的实验环境以及在自动驾驶汽车公司收集的现实情况下进行了广泛的模拟,定量地证明了计划者设计的有效性及其优于基线方法的有效性。
Neural network-based driving planners have shown great promises in improving task performance of autonomous driving. However, it is critical and yet very challenging to ensure the safety of systems with neural network based components, especially in dense and highly interactive traffic environments. In this work, we propose a safety-driven interactive planning framework for neural network-based lane changing. To prevent over conservative planning, we identify the driving behavior of surrounding vehicles and assess their aggressiveness, and then adapt the planned trajectory for the ego vehicle accordingly in an interactive manner. The ego vehicle can proceed to change lanes if a safe evasion trajectory exists even in the predicted worst case; otherwise, it can stay around the current lateral position or return back to the original lane. We quantitatively demonstrate the effectiveness of our planner design and its advantage over baseline methods through extensive simulations with diverse and comprehensive experimental settings, as well as in real-world scenarios collected by an autonomous vehicle company.