论文标题
高通量计算结合了机器学习以研究二进制MG合金的腐蚀特性
High-throughput calculations combining machine learning to investigate the corrosion properties of binary Mg alloys
论文作者
论文摘要
镁(mg)合金作为结构和生物医学材料表现出很高的前景,而耐腐蚀性较差会限制其进一步的应用。在这项工作中,为了避免耗时且费力的实验试验,从热力学和动力学的角度来看,基于第一原理计算的高通量计算策略设计用于筛选具有耐腐蚀性的二进制MG合金和金属金属的金属合金。首先鉴定出相对于MG基质的稳定二进制MG金属跨金属质量。然后,计算了这些MG金属间的表面上的氢吸附能,并通过氢进化反应(HER)动力学模型进一步计算腐蚀交换电流密度。几种金属间学,例如Y3mg,Y2mg和La5mg被认为是有前途的金属间,这可能有效地阻碍了她的阴极。此外,开发机器学习(ML)模型是为了预测使用工作功能(W_F)和加权的第一电离能(WFIE)的适当氢吸附能量的MG金属金属。 ML模型的概括在五个新的二进制MG金属金属中测试,平均均方根误差(RMSE)为0.11 eV。这项研究不仅可以预测一些有希望的二进制MG金属金属质量,这些金属金属可能会抑制电流腐蚀,而且还提供了高通量筛选策略和ML模型,用于设计耐腐蚀合金的设计,可以扩展到三元MG合金或其他合金系统。
Magnesium (Mg) alloys have shown great prospects as both structural and biomedical materials, while poor corrosion resistance limits their further application. In this work, to avoid the time-consuming and laborious experiment trial, a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics, from both the thermodynamic and kinetic perspectives. The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified. Then, the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated, and the corrosion exchange current density is further calculated by a hydrogen evolution reaction (HER) kinetic model. Several intermetallics, e.g. Y3Mg, Y2Mg and La5Mg, are identified to be promising intermetallics which might effectively hinder the cathodic HER. Furthermore, machine learning (ML) models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function (W_f) and weighted first ionization energy (WFIE). The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error (RMSE) of 0.11 eV. This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion, but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy, which can be extended to ternary Mg alloys or other alloy systems.