论文标题

哈勃危机是否与恐龙的灭绝有关?

Is the Hubble crisis connected with the extinction of dinosaurs?

论文作者

Perivolaropoulos, Leandros

论文摘要

最近有人建议,有效的牛顿常数$ g _ {\ rm eff} $的重力过渡约为10%,发生在50-150 MYRS之前,可以使Hubble危机和标准$λ$ CDM模型的增长张力解决。最近在塔利·费舍尔银河质量数据数据以及CepheID SNIA校准器数据中发现了这种突然过渡的提示,有时在过渡前的重力较弱。在这里,我们使用蒙特卡洛模拟表明,这种过渡可能会显着增加(以3倍或以上的倍数),长期彗星(LPC)的数量(LPC)从Oort云(轨道的半马约尔轴$ \ gtrsim 10^4au $)上影响太阳系。这种增加与陆地和月球壁壁率的观察证据一致,这表明公里大小的物体的影响磁通量至少增加了2倍,而与长期平均值相比,过去100个MYR的影响。这种增长也可能与Chicxulub撞击事件有关,该事件产生了大约66 Myrs前地球上75%(包括恐龙)生命的75%生命的灭绝。我们使用蒙特卡洛模拟来表明,对于各向同性的Oort云彗星分布,具有最初圆形轨道,随机速度扰动(例如,通过恒星和/或银河系潮汐效应诱导),当$ g _ {\ rm eff} $增加时,轨道的变形会大大增加。 $ g _ {\ rm eff} $增长10%会导致彗星进入损失锥的概率增加,到达行星区域(小于10AU的周围)的范围为5%的因素,范围从5%(对于速度均比彗星初始速率)到最初的300%(以范围为300%)(以供超过300%)(以便均超过300%) 速度)。

It has recently been suggested that a gravitational transition of the effective Newton's constant $G_{\rm eff}$ by about 10%, taking place 50-150 Myrs ago, can lead to the resolution of both the Hubble crisis and the growth tension of the standard $Λ$CDM model. Hints for such an abrupt transition with weaker gravity at times before the transition, have recently been identified in Tully Fisher galactic mass-velocity data and also in Cepheid SnIa calibrator data. Here we use Monte-Carlo simulations to show that such a transition could significantly increase (by a factor of 3 or more) the number of long period comets (LPCs) impacting the solar system from the Oort cloud (semi-major axis of orbits $\gtrsim 10^4AU$). This increase is consistent with observational evidence from the terrestrial and lunar cratering rates indicating that the impact flux of kilometer sized objects increased by at least a factor of 2 over that last 100 Myrs compared to the long term average. This increase may also be connected with the Chicxulub impactor event that produced the Cretaceous-Tertiary (K-T) extinction of 75% of life on Earth (including dinosaurs) about 66 Myrs ago. We use Monte-Carlo simulations to show that for isotropic Oort cloud comet distribution with initially circular orbits, random velocity perturbations (induced eg by passing stars and/or galactic tidal effects), lead to a deformation of the orbits that increases significantly when $G_{\rm eff}$ increases. A 10% increase of $G_{\rm eff}$ leads to an increase in the probability of the comets to enter the loss cone and reach the planetary region (pericenter of less than 10AU) by a factor that ranges from 5% (for velocity perturbation much smaller than the comet initial velocity) to more than 300% (for total velocity perturbations comparable with the initial comet velocity).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源