论文标题

6G网络切片控制的协作统计参与者批判性学习方法

A Collaborative Statistical Actor-Critic Learning Approach for 6G Network Slicing Control

论文作者

Rezazadeh, Farhad, Chergui, Hatim, Blanco, Luis, Alonso, Luis, Verikoukis, Christos

论文摘要

人工智能(AI)驱动的零接触式大型网络切片被认为是5G(B5G)/6G的一项破坏性技术,在该技术中,租赁将以先进的数字用例的形式扩展到最终消费者。在本文中,我们提出了一种新型的无模型深度加固学习(DRL)框架,称为协作统计参与者批评(CS-AC),在6G型RAN场景中,在移动边缘计算(MEC)和大量的多输入多输入多输入(MMIMO)中,可以实现可扩展且远见的切片性能管理。在此意图中,拟议的CS-AC针对长期统计服务水平协议(SLA)的潜伏成本的优化。特别是,我们考虑了第Q-tay延迟百分比SLA度量,并在其上强制执行一些特定的预设约束。此外,为了实现分布式学习者,我们提出了一种具有较低高参数敏感性的软参与者(SAC)的已发达变体。最后,我们提出了数值结果,以展示在我们构建的基于OpenAI的网络切片环境中所采用的方法的增益,并根据延迟,SLA Q-theperial和时间效率来验证性能。据我们所知,这是研究AI驱动方法在统计SLA下进行大规模网络切片的可行性的第一项工作。

Artificial intelligence (AI)-driven zero-touch massive network slicing is envisioned to be a disruptive technology in beyond 5G (B5G)/6G, where tenancy would be extended to the final consumer in the form of advanced digital use-cases. In this paper, we propose a novel model-free deep reinforcement learning (DRL) framework, called collaborative statistical Actor-Critic (CS-AC) that enables a scalable and farsighted slice performance management in a 6G-like RAN scenario that is built upon mobile edge computing (MEC) and massive multiple-input multiple-output (mMIMO). In this intent, the proposed CS-AC targets the optimization of the latency cost under a long-term statistical service-level agreement (SLA). In particular, we consider the Q-th delay percentile SLA metric and enforce some slice-specific preset constraints on it. Moreover, to implement distributed learners, we propose a developed variant of soft Actor-Critic (SAC) with less hyperparameter sensitivity. Finally, we present numerical results to showcase the gain of the adopted approach on our built OpenAI-based network slicing environment and verify the performance in terms of latency, SLA Q-th percentile, and time efficiency. To the best of our knowledge, this is the first work that studies the feasibility of an AI-driven approach for massive network slicing under statistical SLA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源