论文标题
矩阵双光谱和非共同代数:超越斜面球体
Matrix Bispectrality and Noncommutative Algebras: beyond the prolate spheroidals
论文作者
论文摘要
双光谱问题是出于努力在对实际线路的傅立叶分析中理解和扩展出色现象的动机:限制时间和频段的操作员是一个不可或缺的操作员,该运算符承认二阶差异操作员在其换向器中具有简单的频谱。在本文中,我们讨论了双光谱问题的非共同版本,该版本是通过允许原始公式中的所有对象获得矩阵可值获得的。对双光谱代数及其演示的深入关注是获取有关双光谱三元组的工具。
The bispectral problem is motivated by an effort to understand and extend a remarkable phenomenon in Fourier analysis on the real line: the operator of time-and-band limiting is an integral operator admitting a second-order differential operator with a simple spectrum in its commutator. In this article, we discuss a noncommutative version of the bispectral problem, obtained by allowing all objects in the original formulation to be matrix-valued. Deep attention is given to bispectral algebras and their presentations as a tool to get information about bispectral triples.