论文标题

通过深度学习技术分析的模拟厚实,完全消耗的CCD暴露

Simulated Thick, Fully-Depleted CCD Exposures Analyzed with Deep Learning Techniques

论文作者

Britt, C., Church, E., Hossbach, T., Loer, B., Saldanha, R., Sinha, N., Woodruff, K.

论文摘要

最近已经探索了较厚的电荷耦合器件(CCD),以进行应用物理,例如核爆炸监测和暗物质检测目的。当以完全消耗的模式运行时,这些设备是各种主要颗粒的敏感探测器。在这项研究中,我们有兴趣将被称为全景分割的深度学习(DL)技术应用于模拟CCD图像,以识别,属性和测量感兴趣的放射性病的能量沉积。我们模拟了所选射射线同位素,$^{135} $ XE的CCD暴露,并覆盖适合表面利率的模拟宇宙MUON背景。我们表明,借助这种DL技术,我们可以将Beta频谱重现为良好的准确性,而遭受了与相同的人群伽马和转换电子的困惑,并且比最佳地识别宇宙MUON。

Thick, Charge Coupled Devices (CCDs) have recently been explored for applied physics, such as nuclear explosion monitoring, and dark matter detection purposes. When run in fully-depleted mode, these devices are sensitive detectors for energy depositions by a variety of primary particles. In this study we are interested in applying the Deep Learning (DL) technique known as panoptic segmentation to simulated CCD images to identify, attribute and measure energy depositions from radioisotopes of interest. We simulate CCD exposures of a chosen radioxenon isotope, $^{135}$Xe, and overlay a simulated cosmic muon background appropriate for a surface-lab. We show that with this DL technique we can reproduce the beta spectrum to good accuracy, while suffering expected confusion with same-topology gammas and conversion electrons and identifying cosmic muons less than optimally.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源