论文标题
与宏观量子光结合的基本量子cramér-rao的传输估计
Transmission Estimation at the Fundamental Quantum Cramér-Rao Bound with Macroscopic Quantum Light
论文作者
论文摘要
量子计量学领域试图将量子技术和/或资源应用于经典感应方法,以便在估计参数的精度之外,超出经典资源可以实现的目标。从理论上讲,给定探测态的参数估计中的基本最小不确定性受量子cramér-rao结合的界定。从实际的角度来看,有必要找到可以饱和这一基本限制的物理测量值,并在实验上表明可以以所需的精度执行测量值。在这里,我们执行的实验使量子cramér-rao饱和,以在探测正在研究的系统中使用明亮的两种模式挤压状态进行探测时,以在广泛的传输范围内进行传输估计。为了正确考虑量子状态生成的缺陷,我们扩展了以前的理论结果,以纳入生成的量子状态的测量属性。对于我们最大的84%传输水平,我们在传输估计方面的最佳经典方案降低了62%,当用明亮的两种模式挤压状态进行探测,并以8 dB的强度差异挤压。鉴于传输估计是许多传感协议的组成部分,例如等离子传感,光谱,探测器量子效率等的校准,结果提出的结果有望对各个研究领域的许多应用产生重大影响。
The field of quantum metrology seeks to apply quantum techniques and/or resources to classical sensing approaches with the goal of enhancing the precision in the estimation of a parameter beyond what can be achieved with classical resources. Theoretically, the fundamental minimum uncertainty in the estimation of a parameter for a given probing state is bounded by the quantum Cramér-Rao bound. From a practical perspective, it is necessary to find physical measurements that can saturate this fundamental limit and to show experimentally that it is possible to perform measurements with the required precision to do so. Here we perform experiments that saturate the quantum Cramér-Rao bound for transmission estimation over a wide range of transmissions when probing the system under study with a bright two-mode squeezed state. To properly take into account the imperfections in the generation of the quantum state, we extend our previous theoretical results to incorporate the measured properties of the generated quantum state. For our largest transmission level of 84%, we show a 62% reduction over the optimal classical protocol in the variance in transmission estimation when probing with a bright two-mode squeezed state with 8 dB of intensity-difference squeezing. Given that transmission estimation is an integral part of many sensing protocols, such as plasmonic sensing, spectroscopy, calibration of the quantum efficiency of detectors, etc., the results presented promise to have a significant impact on a number of applications in various fields of research.