论文标题

检测AB AUR(前)过渡磁盘表面的近红外水冰:告知冰冷的谷物丰度,成分和大小

Detection of Near-Infrared Water Ice at the Surface of the (pre)Transitional Disk of AB Aur: Informing Icy Grain Abundance, Composition, and Size

论文作者

Betti, S. K., Follette, K., Jorquera, S., Duchêne, G., Mazoyer, J., Bonnefoy, M., Chauvin, G., Pérez, L. M., Boccaletti, A., Pinte, C., Weinberger, A. J., Grady, C., Close, L. M., Defrère, D., Downey, E. C., Hinz, P. M., Ménard, F., Schneider, G., Skemer, A. J., Vaz, A.

论文摘要

我们提出了近红外的大型双筒望远镜干涉仪LMIRCAM图像Herbig Ae/Be Be Star Ab Aurigae周围的磁盘图像。 KS(2.16 $ $ M),H2O窄带(3.08 $ $ M)和L'(3.7 $μ$ m)的表面亮度的比较使我们能够在此(PRE)过渡性磁盘环境中探测冰冷的存在。通过应用参考差异成像PSF减法,我们在所有三个频段中检测到高信号的磁盘至噪声。我们发现频段之间存在很大的形态差异,包括与L'100 au内观察到的螺旋臂一致的不对称性。相对于括号波长(KS和L'),在3.08 $ $ m处的散射光的明显赤字是磁盘表面层的冰吸收的回忆性。但是,$δ$(KS-H2O)颜色与几乎没有冰的谷物一致(质量为0-5%)。相反,$δ$(H2O-L')颜色表明晶粒具有更高的冰分(约0.68),并且两种颜色在单个谷物种群模型下无法对付。此外,我们发现在常规散射的光建模下,谷物参数的任何组合或合理的局部灭绝值都无法重现极红色的$δ$δ$(ks-l')磁盘颜色。我们假设三个波长处的散射表面不是共同的,并且光学深度效应会导致每个波长探测不同磁盘表面深度处的晶粒群体。 KS和H2O之间的形态相似性表明它们的散射表面彼此接近,在最外面散射磁盘层的$δ$(ks-H2O)磁盘颜色约束<5%的冰分分数中均借出了信用。

We present near-infrared Large Binocular Telescope Interferometer LMIRCam imagery of the disk around the Herbig Ae/Be star AB Aurigae. A comparison of surface brightness at Ks (2.16 $μ$m), H2O narrowband (3.08 $μ$m), and L' (3.7 $μ$m) allows us to probe the presence of icy grains in this (pre)transitional disk environment. By applying Reference Differential Imaging PSF subtraction, we detect the disk at high signal to noise in all three bands. We find strong morphological differences between bands, including asymmetries consistent with observed spiral arms within 100 AU in L'. An apparent deficit of scattered light at 3.08 $μ$m relative to bracketing wavelengths (Ks and L') is evocative of ice absorption at the disk surface layer. However, the $Δ$(Ks-H2O) color is consistent with grains with little to no ice (0-5% by mass). The $Δ$(H2O-L') color, conversely, suggests grains with a much higher ice mass fraction (~0.68), and the two colors cannot be reconciled under a single grain population model. Additionally, we find the extremely red $Δ$(Ks-L') disk color cannot be reproduced under conventional scattered light modeling with any combination of grain parameters or reasonable local extinction values. We hypothesize that the scattering surfaces at the three wavelengths are not co-located, and optical depth effects result in each wavelength probing the grain population at different disk surface depths. The morphological similarity between Ks and H2O suggests their scattering surfaces are near one another, lending credence to the $Δ$(Ks-H2O) disk color constraint of < 5% ice mass fraction for the outermost scattering disk layer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源