论文标题
偶极式量子系统中的耦合流体力学
Coupled Hydrodynamics in Dipole-Conserving Quantum Systems
论文作者
论文摘要
我们研究了与偶极保存相互作用的晶格模型中电荷和能量的耦合动力学。我们通过开发微观的非平衡量子场理论来验证分形约束和数值验证其对特定骨量子系统的晚期动力学的适用性,为分形构成的这种组合制定了通用流体动力学理论。我们在字段组件数量中采用自洽的$ 1/n $近似值,我们提取了广义扩散矩阵的所有条目,并确定它们对显微镜模型参数的依赖性。我们讨论了我们的结果与超速原子量子模拟器中的实验的关系。
We investigate the coupled dynamics of charge and energy in interacting lattice models with dipole conservation. We formulate a generic hydrodynamic theory for this combination of fractonic constraints and numerically verify its applicability to the late-time dynamics of a specific bosonic quantum system by developing a microscopic non-equilibrium quantum field theory. Employing a self-consistent $1/N$ approximation in the number of field components, we extract all entries of a generalized diffusion matrix and determine their dependence on microscopic model parameters. We discuss the relation of our results to experiments in ultracold atom quantum simulators.