论文标题
动态的深卷积烛台学习者
Dynamic Deep Convolutional Candlestick Learner
论文作者
论文摘要
烛台模式是金融交易中最基本和最有价值的图形工具之一,它支持交易者观察当前的市场状况以做出正确的决定。这项任务历史悠久,大多数时候都是人类专家。最近,已经努力通过深度学习模型自动将这些模式分类。 GAF-CNN模型是一种非常适合模仿人类贸易商如何通过视觉整合空间特征来捕获烛台模式的方法。但是,凭借GAF编码的巨大潜力,该分类任务可以扩展到更复杂的对象检测级别。这项工作介绍了对烛台模式任务编码的现代对象检测技术和GAF时间序列的创新整合。我们根据我们的时间序列编码方法和此类数据类型的属性对代表性但直接的Yolo版本1模型进行关键修改。在深层神经网络和独特的建筑设计的支持下,提出的模型在烛台分类和位置识别方面表现出色。结果表明,以实时方式将现代对象检测技术应用于时间序列任务上的巨大潜力。
Candlestick pattern is one of the most fundamental and valuable graphical tools in financial trading that supports traders observing the current market conditions to make the proper decision. This task has a long history and, most of the time, human experts. Recently, efforts have been made to automatically classify these patterns with the deep learning models. The GAF-CNN model is a well-suited way to imitate how human traders capture the candlestick pattern by integrating spatial features visually. However, with the great potential of the GAF encoding, this classification task can be extended to a more complicated object detection level. This work presents an innovative integration of modern object detection techniques and GAF time-series encoding on candlestick pattern tasks. We make crucial modifications to the representative yet straightforward YOLO version 1 model based on our time-series encoding method and the property of such data type. Powered by the deep neural networks and the unique architectural design, the proposed model performs pretty well in candlestick classification and location recognition. The results show tremendous potential in applying modern object detection techniques on time-series tasks in a real-time manner.