论文标题

Dropo:带有离线域随机化的SIM到现实转移

DROPO: Sim-to-Real Transfer with Offline Domain Randomization

论文作者

Tiboni, Gabriele, Arndt, Karol, Kyrki, Ville

论文摘要

近年来,作为动态参数的域随机化已经获得了很多吸引,作为在机器人操作中使用增强策略的SIM卡转移的一种方法。但是,找到最佳的随机分布可能很困难。在本文中,我们介绍了Dropo,这是一种用于估算安全SIM到真实传输的域随机分布的新方法。与先前的工作不同,Dropo仅需要有限的,预先收集的轨迹数据集,并明确地模拟参数不确定性,以使用基于似然的方法匹配真实数据。我们证明了Dropo能够在模拟中恢复动态参数分布,并找到能够补偿未建模现象的分布。我们还在两个零射击的SIM到运行传输方案中评估了该方法,显示了成功的域传输和改善先前方法的性能。

In recent years, domain randomization over dynamics parameters has gained a lot of traction as a method for sim-to-real transfer of reinforcement learning policies in robotic manipulation; however, finding optimal randomization distributions can be difficult. In this paper, we introduce DROPO, a novel method for estimating domain randomization distributions for safe sim-to-real transfer. Unlike prior work, DROPO only requires a limited, precollected offline dataset of trajectories, and explicitly models parameter uncertainty to match real data using a likelihood-based approach. We demonstrate that DROPO is capable of recovering dynamic parameter distributions in simulation and finding a distribution capable of compensating for an unmodeled phenomenon. We also evaluate the method in two zero-shot sim-to-real transfer scenarios, showing successful domain transfer and improved performance over prior methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源