论文标题

独角兽:通过因果关系镜头的可配置系统性能的推理

Unicorn: Reasoning about Configurable System Performance through the lens of Causality

论文作者

Iqbal, Md Shahriar, Krishna, Rahul, Javidian, Mohammad Ali, Ray, Baishakhi, Jamshidi, Pooyan

论文摘要

现代计算机系统具有高度可配置的,其总变异空间有时大于宇宙中原子的数量。在庞大而可变的空间上,了解高度可配置系统的性能行为的理解和推理具有挑战性。用于性能建模和分析的最新方法依赖于预测的机器学习模型,因此,它们变得(i)在看不见的环境(例如,不同的硬件,工作负载)和(ii)中变得不可靠,可能会产生错误的解释。为了解决这个问题,我们提出了一种称为独角兽的新方法,该方法(i)捕获了整个软件硬件堆栈中配置选项之间的复杂交互,(ii)描述了这种交互如何通过因果推理影响性能变化。我们在六个高度可配置的系统上评估了独角兽,包括三个设备机学习系统,一个视频编码器,数据库管理系统和数据分析管道。实验结果表明,独角兽的表现优于最先进的性能调试和优化方法,以寻找有效的绩效缺陷维修和找到近距离性能的配置。此外,与现有方法不同,学识渊博的因果绩效模型可靠地预测新环境的性能。

Modern computer systems are highly configurable, with the total variability space sometimes larger than the number of atoms in the universe. Understanding and reasoning about the performance behavior of highly configurable systems, over a vast and variable space, is challenging. State-of-the-art methods for performance modeling and analyses rely on predictive machine learning models, therefore, they become (i) unreliable in unseen environments (e.g., different hardware, workloads), and (ii) may produce incorrect explanations. To tackle this, we propose a new method, called Unicorn, which (i) captures intricate interactions between configuration options across the software-hardware stack and (ii) describes how such interactions can impact performance variations via causal inference. We evaluated Unicorn on six highly configurable systems, including three on-device machine learning systems, a video encoder, a database management system, and a data analytics pipeline. The experimental results indicate that Unicorn outperforms state-of-the-art performance debugging and optimization methods in finding effective repairs for performance faults and finding configurations with near-optimal performance. Further, unlike the existing methods, the learned causal performance models reliably predict performance for new environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源