论文标题

具有有限维的希尔伯特空间的宇宙标量田的工具包

Toolkit for Scalar Fields in Universes with finite-dimensional Hilbert Space

论文作者

Friedrich, Oliver, Singh, Ashmeet, Doré, Olivier

论文摘要

全息原理表明,量子重力的希尔伯特空间是局部有限维度的。由这个观看点及其在可观察到的宇宙中的应用,我们引入了一组数字和概念工具,以描述具有有限维的希尔伯特空间的标量领域,并在不断扩展的宇宙学背景下研究其行为。这些工具包括准确的近似值,以计算字段模式的真空能量$ \ mathbf {k} $作为维度$ d _ {\ mathbf {k}} $的函数,用于Hilbert Space的模式,以及该尺寸的参数模型,该尺寸与$ | \ Mathbf {k} | $ | \ sathbf {k} | $。我们表明,对于该模型的参数的某些值,我们的施工的最大熵暂时尺度如可观察到的宇宙的边界区域。并且我们发现,最大熵通常遵循子体积缩放,只要$ d _ {\ mathbf {k}} $以$ | \ mathbf {k} | $减少。我们还证明,有限维场的真空能量密度是动态的,并且在我们的基金结构中两个恒定时期之间的衰减。这些结果依赖于许多非平凡的建模选择,但是我们的一般框架可能是对希尔伯特空间有限二维对宇宙物理学有限的影响的起点的起点。

The holographic principle suggests that the Hilbert space of quantum gravity is locally finite-dimensional. Motivated by this point-of-view, and its application to the observable Universe, we introduce a set of numerical and conceptual tools to describe scalar fields with finite-dimensional Hilbert spaces, and to study their behaviour in expanding cosmological backgrounds. These tools include accurate approximations to compute the vacuum energy of a field mode $\mathbf{k}$ as a function of the dimension $d_{\mathbf{k}}$ of the mode Hilbert space, as well as a parametric model for how that dimension varies with $|\mathbf{k}|$. We show that the maximum entropy of our construction momentarily scales like the boundary area of the observable Universe for some values of the parameters of that model. And we find that the maximum entropy generally follows a sub-volume scaling as long as $d_{\mathbf{k}}$ decreases with $|\mathbf{k}|$. We also demonstrate that the vacuum energy density of the finite-dimensional field is dynamical and decays between two constant epochs in our fiducial construction. These results rely on a number of non-trivial modelling choices, but our general framework may serve as a starting point for future investigations of the impact of finite-dimensionality of Hilbert space on cosmological physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源