论文标题
吐司:使用共享神经网络动态的轨迹优化和同时跟踪
TOAST: Trajectory Optimization and Simultaneous Tracking using Shared Neural Network Dynamics
论文作者
论文摘要
神经网络已越来越多地用于模型预测控制器(MPC)来控制非线性动态系统。但是,MPC仍然提出一个问题,即可实现的更新速率不足以应对模型不确定性和外部干扰。在本文中,我们提出了一种新颖的控制方案,该方案可以使用MPC的神经网络动力学设计一个最佳跟踪控制器,从而使任何现有基于模型的FeedForward Controller的插件扩展程序都可以应用。我们还描述了我们的方法如何处理包含历史信息的神经网络,该信息不遵循一般的动态形式。该方法通过其在外部干扰的经典控制基准中的性能进行评估。我们还扩展了控制框架,以应用于具有未知摩擦的积极自主驾驶任务。在所有实验中,我们的方法的表现都超过了比较的方法。我们的控制器还显示出低控制的水平,表明我们的反馈控制器不会干扰MPC的最佳命令。
Neural networks have been increasingly employed in Model Predictive Controller (MPC) to control nonlinear dynamic systems. However, MPC still poses a problem that an achievable update rate is insufficient to cope with model uncertainty and external disturbances. In this paper, we present a novel control scheme that can design an optimal tracking controller using the neural network dynamics of the MPC, making it possible to be applied as a plug-and-play extension for any existing model-based feedforward controller. We also describe how our method handles a neural network containing history information, which does not follow a general form of dynamics. The proposed method is evaluated by its performance in classical control benchmarks with external disturbances. We also extend our control framework to be applied in an aggressive autonomous driving task with unknown friction. In all experiments, our method outperformed the compared methods by a large margin. Our controller also showed low control chattering levels, demonstrating that our feedback controller does not interfere with the optimal command of MPC.