论文标题

中心线的脑动脉网络建模和六面体网络

Modeling and hexahedral meshing of cerebral arterial networks from centerlines

论文作者

Decroocq, Méghane, Frindel, Carole, Rougé, Pierre, Ohta, Makoto, Lavoué, Guillaume

论文摘要

计算流体动力学(CFD)模拟提供了有关血管几何学血流的有价值信息。但是,它需要从低分辨率医学图像中提取精确的动脉模型,这仍然具有挑战性。基于中心线的表示形式被广泛用于对大型血管网络建模,因为它既编码几何信息和拓扑信息,又可以促进手动编辑。在这项工作中,我们提出了一种自动方法,以直接从中心线生成适合CFD的结构化六面体网。我们解决了建模和网格划分任务。我们提出了一个基于惩罚花键的容器模型,以克服中心线表示固有的局限性,例如噪声和稀疏性。分叉是根据我们扩展到平面N-孔口的解剖结构的参数模型重建的。最后,我们开发了一种用拟议的血管网络模型的结构化,六面体和流动为导向的细胞产生体积网格的方法。所提出的方法为中心线的常见缺陷提供了更好的鲁棒性,并且与最新方法相比提高了网格质量。由于它仅依赖于中心线,因此可以毫不费力地编辑血管模型,以研究血管几何形状和拓扑对血液动力学的影响。我们通过完全网格汇集了60个脑血管网络的数据集来证明我们的方法的效率。尽管输入数据的挑战性,尽管有92%的血管和83%的分叉被隔离而没有需要手动干预的缺陷。源代码公开发布。

Computational fluid dynamics (CFD) simulation provides valuable information on blood flow from the vascular geometry. However, it requires extracting precise models of arteries from low-resolution medical images, which remains challenging. Centerline-based representation is widely used to model large vascular networks with small vessels, as it encodes both the geometric and topological information and facilitates manual editing. In this work, we propose an automatic method to generate a structured hexahedral mesh suitable for CFD directly from centerlines. We addressed both the modeling and meshing tasks. We proposed a vessel model based on penalized splines to overcome the limitations inherent to the centerline representation, such as noise and sparsity. The bifurcations are reconstructed using a parametric model based on the anatomy that we extended to planar n-furcations. Finally, we developed a method to produce a volume mesh with structured, hexahedral, and flow-oriented cells from the proposed vascular network model. The proposed method offers better robustness to the common defects of centerlines and increases the mesh quality compared to state-of-the-art methods. As it relies on centerlines alone, it can be applied to edit the vascular model effortlessly to study the impact of vascular geometry and topology on hemodynamics. We demonstrate the efficiency of our method by entirely meshing a dataset of 60 cerebral vascular networks. 92% of the vessels and 83% of the bifurcations were meshed without defects needing manual intervention, despite the challenging aspect of the input data. The source code is released publicly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源