论文标题

对上下文信息对利益点建议的影响的系统分析

A Systematic Analysis on the Impact of Contextual Information on Point-of-Interest Recommendation

论文作者

Rahmani, Hossein A., Aliannejadi, Mohammad, Baratchi, Mitra, Crestani, Fabio

论文摘要

随着基于位置的社交网络(LBSN)的普及,为利益点(POI)推荐设计准确的模型引起了更多关注。 POI建议通常是通过将上下文信息纳入先前设计的建议算法来执行的。 POI推荐中考虑的一些主要上下文信息是位置属性(即位置,类别和登记时间时间的确切坐标),用户属性(即注释,评论,评论,提示和登机位置)以及其他信息,例如POI与用户主要活动位置以及用户之间的社交位置的距离以及用户之间的距离。正确选择此类因素可以显着影响POI建议的性能。但是,以前的研究并未考虑这些不同因素的组合的影响。在本文中,我们提出了不同的上下文模型,并在POI建议中分析了不同主要上下文信息的融合。本文的主要贡献是:(i)对上下文感知的位置建议(ii)在POI建议中量化和分析不同上下文信息(例如社交,时间,空间和分类)的影响的影响和分析对可用基础线的影响(例如,社交,时间,空间和分类)的影响,并将两种新的线性和非线性模型纳入各种建议模型,并将其纳入其中的两种建议,并将其纳入单个建议模型,并将其纳入单个建议中,并将其纳入单个建议中,并将其纳入单个建议中,并将其纳入II(II),并将其纳入II(II)中(II)(II)(II)(II)(II)(II)(II)(ii)(II)(II)(ii)(II)(II)(现实世界数据集。我们的结果表明,尽管对地理和时间影响进行建模可以提高建议质量,但将所有其他上下文信息融合到建议模型中并不总是最好的策略。

As the popularity of Location-based Social Networks (LBSNs) increases, designing accurate models for Point-of-Interest (POI) recommendation receives more attention. POI recommendation is often performed by incorporating contextual information into previously designed recommendation algorithms. Some of the major contextual information that has been considered in POI recommendation are the location attributes (i.e., exact coordinates of a location, category, and check-in time), the user attributes (i.e., comments, reviews, tips, and check-in made to the locations), and other information, such as the distance of the POI from user's main activity location, and the social tie between users. The right selection of such factors can significantly impact the performance of the POI recommendation. However, previous research does not consider the impact of the combination of these different factors. In this paper, we propose different contextual models and analyze the fusion of different major contextual information in POI recommendation. The major contributions of this paper are: (i) providing an extensive survey of context-aware location recommendation (ii) quantifying and analyzing the impact of different contextual information (e.g., social, temporal, spatial, and categorical) in the POI recommendation on available baselines and two new linear and non-linear models, that can incorporate all the major contextual information into a single recommendation model, and (iii) evaluating the considered models using two well-known real-world datasets. Our results indicate that while modeling geographical and temporal influences can improve recommendation quality, fusing all other contextual information into a recommendation model is not always the best strategy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源