论文标题

使用绿色功能方法的2D不可压缩EULER方程的分析伴随解决方案

Analytic Adjoint Solutions for the 2D Incompressible Euler Equations Using the Green's Function Approach

论文作者

Lozano, Carlos, Ponsin, Jorge

论文摘要

Green的Giles和Pierce的功能方法用于构建基于升力和阻力的分析伴随解决方案,以围绕无旋转基础流动周围的二维不可压缩的Euler方程。根据流量变量,基于阻力的伴随解决方案具有非常简单的封闭形式,并且在整个流动域中都很光滑,而基于升力的溶液在后停滞点处是单数,并且由于kutta条件而呈锋利的尾随边缘。这种奇异性通过kutta条件的敏感性对停滞压力的变化的敏感性传播到后奇异性(尾边缘或后停滞点)上游的整个分裂流线(包括传入的停滞流线和墙壁)。

The Green's function approach of Giles and Pierce is used to build the lift and drag based analytic adjoint solutions for the two-dimensional incompressible Euler equations around irrotational base flows. The drag-based adjoint solution turns out to have a very simple closed form in terms of the flow variables and is smooth throughout the flow domain, while the lift-based solution is singular at rear stagnation points and sharp trailing edges owing to the Kutta condition. This singularity is propagated to the whole dividing streamline (which includes the incoming stagnation streamline and the wall) upstream of the rear singularity (trailing edge or rear stagnation point) by the sensitivity of the Kutta condition to changes in the stagnation pressure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源