论文标题
通过功能相关性,光学遥感图像中的轻巧显着对象检测
Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation
论文作者
论文摘要
光学遥感图像(ORSI-SOD)中的显着对象检测已被广泛探索以理解Orsis。但是,以前的方法主要着重于提高检测准确性,同时忽略了内存和计算中的成本,这可能会阻碍其现实世界中的应用。在本文中,我们提出了一种新型的轻巧的Orsi-Sod解决方案,即Corrnet,以解决这些问题。在Corrnet中,我们首先减轻了骨干(VGG-16),并构建一个轻巧的子网进行特征提取。然后,遵循粗到最新的策略,我们从相关模块(Corrm)中的高级语义特征产生了初始的粗显着图。粗大图作为低级特征的位置指南。在Corrm中,我们通过跨层相关操作在高级语义特征之间挖掘对象位置信息。最后,基于低级详细特征,我们在配备有密度轻巧的精炼块的细化子网中完善了粗大图,并生成了最终的优质显着图。通过减少每个组件的参数和计算,Corrnet最终只有409万参数,并以21.09g的拖鞋运行。两个公共数据集的实验结果表明,与26种最先进的方法(包括16种基于CNN的大型方法和2种轻量级方法)相比,我们的轻质Corrnet具有竞争性甚至更好的性能,同时享受清晰的记忆并运行时间效率。我们方法的代码和结果可在https://github.com/mathlee/corrnet上获得。
Salient object detection in optical remote sensing images (ORSI-SOD) has been widely explored for understanding ORSIs. However, previous methods focus mainly on improving the detection accuracy while neglecting the cost in memory and computation, which may hinder their real-world applications. In this paper, we propose a novel lightweight ORSI-SOD solution, named CorrNet, to address these issues. In CorrNet, we first lighten the backbone (VGG-16) and build a lightweight subnet for feature extraction. Then, following the coarse-to-fine strategy, we generate an initial coarse saliency map from high-level semantic features in a Correlation Module (CorrM). The coarse saliency map serves as the location guidance for low-level features. In CorrM, we mine the object location information between high-level semantic features through the cross-layer correlation operation. Finally, based on low-level detailed features, we refine the coarse saliency map in the refinement subnet equipped with Dense Lightweight Refinement Blocks, and produce the final fine saliency map. By reducing the parameters and computations of each component, CorrNet ends up having only 4.09M parameters and running with 21.09G FLOPs. Experimental results on two public datasets demonstrate that our lightweight CorrNet achieves competitive or even better performance compared with 26 state-of-the-art methods (including 16 large CNN-based methods and 2 lightweight methods), and meanwhile enjoys the clear memory and run time efficiency. The code and results of our method are available at https://github.com/MathLee/CorrNet.