论文标题
在较弱的情况下导致发生率的几何形状
On a paucity result in Incidence Geometry
论文作者
论文摘要
我们获得了一些渐近公式(以错误的术语节省了功率),以涉及任意集合的笛卡尔产品数量$ a \ subset \ mathbf {r} $,以及$ a \ times $ a \ times $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ \ m m m i \ m m i \ m m i \ mathbf {f} $的quintuplepters的数量。另外,我们在$ \ mathbf {f} _p $中获得了结果的一些应用程序。
We obtain some asymptotic formulae (with power savings in their error terms) for the number of quadruples in the Cartesian product of an arbitrary set $A \subset \mathbf{R}$ and for the number of quintuplets in $A\times A$ for any subset $A$ of the prime field $\mathbf{F}_p$. Also, we obtain some applications of our results to incidence problems in $\mathbf{F}_p$.