论文标题

功能近似的一般方法

General approach to function approximation

论文作者

Liptaj, Andrej

论文摘要

具有功能$ f $和一组函数$ \ {\ MATHCAL {C} _ {n} \} $,$ C_N^f \ equiv \ equiv \ equiv \ Mathcal {c} _n _n \ left(f \ weled(f \ right)$通常可以将功能近似为某些函数$ \ nath $ \ nath $ \ mathcal} an} $ c_n^f = \ mathcal {c} _n \ left(\ mathcal {a} _n^f \ right)$。所有已知的近似值都可以通过这种方式来解释,我们会审查其中的一些近似值。此外,我们构建了几种新的扩展类型,包括三个有理近似值。

Having a function $f$ and a set of functionals $\{\mathcal{C}_{n}\}$, $c_n^f \equiv \mathcal{C}_n \left(f\right)$, one can interpret function approximation very generally as a construction of some function $\mathcal{A}_{N}^{f}$ such that $c_n^f = \mathcal{C}_n \left(\mathcal{A}_N^f \right)$. All known approximations can be interpreted in this way and we review some of them. In addition, we construct several new expansion types including three rational approximations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源