论文标题

消除与天线方法的线性相关ODE的订单降低

Eliminating Order Reduction on Linear, Time-Dependent ODEs with GARK Methods

论文作者

Roberts, Steven, Sandu, Adrian

论文摘要

当应用于僵硬的线性微分方程与时间依赖性强迫时,runge-kutta方法的收敛速率可能低于经典条件理论的预测。通常,通过使用具有高舞台秩序或满足其他订单条件的专门方案的昂贵,完全隐含的runge-kutta方法来解决这种降低现象。这项工作开发了一种灵活的方法,即使用一种完全隐式的方法来增强任意runge-kutta方法,用于处理强迫,例如维护基本方案的经典顺序。我们的方法和分析基于一般结构加性runge-kutta框架。使用对角线隐式,完全隐式甚至明确的runge-kutta方法进行的数值实验证实,新方法消除了所考虑的问题类别的秩序降低,而基本方法达到了其理论融合顺序。

When applied to stiff, linear differential equations with time-dependent forcing, Runge-Kutta methods can exhibit convergence rates lower than predicted by the classical order condition theory. Commonly, this order reduction phenomenon is addressed by using an expensive, fully implicit Runge-Kutta method with high stage order or a specialized scheme satisfying additional order conditions. This work develops a flexible approach of augmenting an arbitrary Runge-Kutta method with a fully implicit method used to treat the forcing such as to maintain the classical order of the base scheme. Our methods and analyses are based on the general-structure additive Runge-Kutta framework. Numerical experiments using diagonally implicit, fully implicit, and even explicit Runge-Kutta methods confirm that the new approach eliminates order reduction for the class of problems under consideration, and the base methods achieve their theoretical orders of convergence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源