论文标题
由决定因素引起的过度分区功能的不平等
Inequalities for the overpartition function arising from determinants
论文作者
论文摘要
令$ \ Overline {p}(n)$表示过度局势。本文提出了$ 2 $ - $ \ log $ -concavity属性的$ \ Overline {p}(n)$,通过考虑以下形式的更一般性不平等\ begin \ begin {equation*} \ begin {vmatrix}} \ edlline {p}(n-1)&\ edline {p}(n)&\ edline {p}(n+1)\\ \ \ \ \\ overline {p}(n-2)&\ edline {p}(n-1)(n-1) \ geq 42 $。
Let $\overline{p}(n)$ denote the overpartition funtion. This paper presents the $2$-$\log$-concavity property of $\overline{p}(n)$ by considering a more general inequality of the following form \begin{equation*} \begin{vmatrix} \overline{p}(n) & \overline{p}(n+1) & \overline{p}(n+2) \\ \overline{p}(n-1) & \overline{p}(n) & \overline{p}(n+1) \\ \overline{p}(n-2) & \overline{p}(n-1) & \overline{p}(n) \end{vmatrix} > 0, \end{equation*} which holds for all $n \geq 42$.