论文标题

在点云中,邻域空间聚集MC脱落,以进行有效的不确定性感知语义分割

Neighborhood Spatial Aggregation MC Dropout for Efficient Uncertainty-aware Semantic Segmentation in Point Clouds

论文作者

Qi, Chao, Yin, Jianqin

论文摘要

点云的不确定性感知语义分割包括预测不确定性估计和不确定性引导的模型优化。任务中的一个关键挑战是优先预测分布建立的效率。广泛使用的MC辍学通过使用多个随机向前传播来计算样品的标准偏差来建立分布,这是基于包含大量点的点云的任务耗时的。因此,提出了一个嵌入了NSA-MC辍学的框架,这是MC辍学的一种变体,仅在一次前传中就建立了分布。具体而言,NSA-MC辍学通过依赖空间的方式多次样本,通过汇总邻居的随机推理结果来输出点的分布。基于这一点,从预测分布中获得了态度和预测性不确定性。态度的不确定性被整合到损失函数中,以惩罚嘈杂点,从而避免了模型过度的一定程度。此外,预测不确定性量化了预测的置信度。实验结果表明,我们的框架获得了现实点云的更好分割结果,并有效地量化了结果的可信度。我们的NSA-MC辍学率几倍比MC辍学快几倍,并且推理时间与采样时间没有建立耦合关系。如果接受纸张,则该代码将可用。

Uncertainty-aware semantic segmentation of the point clouds includes the predictive uncertainty estimation and the uncertainty-guided model optimization. One key challenge in the task is the efficiency of point-wise predictive distribution establishment. The widely-used MC dropout establishes the distribution by computing the standard deviation of samples using multiple stochastic forward propagations, which is time-consuming for tasks based on point clouds containing massive points. Hence, a framework embedded with NSA-MC dropout, a variant of MC dropout, is proposed to establish distributions in just one forward pass. Specifically, the NSA-MC dropout samples the model many times through a space-dependent way, outputting point-wise distribution by aggregating stochastic inference results of neighbors. Based on this, aleatoric and predictive uncertainties acquire from the predictive distribution. The aleatoric uncertainty is integrated into the loss function to penalize noisy points, avoiding the over-fitting of the model to some degree. Besides, the predictive uncertainty quantifies the confidence degree of predictions. Experimental results show that our framework obtains better segmentation results of real-world point clouds and efficiently quantifies the credibility of results. Our NSA-MC dropout is several times faster than MC dropout, and the inference time does not establish a coupling relation with the sampling times. The code will be available if the paper is accepted.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源