论文标题

骨折和异质培养基中时间分数孔隙弹性问题的计算宏观计算模型

A computational macroscale model for the time fractional poroelasticity problem in fractured and heterogeneous media

论文作者

Tyrylgin, Aleksei, Vasilyeva, Maria, Alikhanov, Anatoly, Sheen, Dongwoo

论文摘要

在这项工作中,我们在孔弹性模型中介绍了时间记忆形式主义,该模型将压力和位移。我们假设此多物理过程发生在多核培养基中。数学模型包含一个方程组的耦合系统,用于每个连续性和弹性方程中的压力,用于介质的位移。我们假设时间动态受文献中一些作品后的分数衍生物的控制。我们根据Caputo时间分数导数得出了一个隐式有限差近似,以进行时间离散化。离散断裂模型(DFM)用于模拟流体流经裂缝的流动并处理复杂的裂缝网络。由于缓慢而快速的动力学,我们假设裂缝和矩阵中的分数能力不同。我们基于广义的多尺度有限元法(GMSFEM)开发粗网格近似,在该方法中,我们解决了用于构建多尺度基础函数的局部光谱问题。我们提出了二维模型问题的数值结果,这些问题是断裂的异质多孔培养基的数值结果。我们研究了具有不同数量的多尺度函数的参考(细尺度)解决方案和多尺度解决方案之间的错误分析。结果表明,所提出的方法可以在粗网格上提供良好的精度。

In this work, we introduce a time memory formalism in poroelasticity model that couples the pressure and displacement. We assume this multiphysics process occurs in multicontinuum media. The mathematical model contains a coupled system of equations for pressures in each continuum and elasticity equations for displacements of the medium. We assume that the temporal dynamics is governed by fractional derivatives following some works in the literature. We derive an implicit finite difference approximation for time discretization based on the Caputo time fractional derivative. A Discrete Fracture Model (DFM) is used to model fluid flow through fractures and treat the complex network of fractures. We assume different fractional powers in fractures and matrix due to slow and fast dynamics. We develop a coarse grid approximation based on the Generalized Multiscale Finite Element Method (GMsFEM), where we solve local spectral problems for construction of the multiscale basis functions. We present numerical results for the two-dimensional model problems in fractured heterogeneous porous media. We investigate error analysis between reference (fine-scale) solution and multiscale solution with different numbers of multiscale basis functions. The results show that the proposed method can provide good accuracy on a coarse grid.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源