论文标题

在两个节点群集状态上连续变量量子混合计算的误差校正:挤压极限

Error correction of the continuous-variable quantum hybrid computation on two-node cluster states: limit of squeezing

论文作者

B., Korolev S., Yu, Golubeva T.

论文摘要

在本文中,我们研究了在连续变化的量子计算过程中获得的通用高斯变换的误差校正。我们试图使我们的理论研究更接近实验中的实际情况。在研究误差校正程序时,我们认为资源GKP状态本身和纠缠转换都是不完善的。实际上,GKP状态具有与有限的挤压程度相关的有限宽度,并且纠缠转换是错误的。我们已经考虑了实施普遍高斯转型的混合方案。在此方案中,转换是通过在群集状态上的计算实现的,并补充了线性光学操作。该方案在实施通用高斯变换时给出了最小的错误。这种方案的使用使得可以减少实施接近现实的易耐故障量子计算方案所需的振荡器挤压阈值至-19.25 dB。

In this paper, we investigate the error correction of universal Gaussian transformations obtained in the process of continuous-variable quantum computations. We have tried to bring our theoretical studies closer to the actual picture in the experiment. When investigating the error correction procedure, we have considered that both the resource GKP state itself and the entanglement transformation are imperfect. In reality, the GKP state has a finite width associated with the finite degree of squeezing, and the entanglement transformation is performed with error. We have considered a hybrid scheme to implement the universal Gaussian transformations. In this scheme, the transformations are realized through computations on the cluster state, supplemented by linear optical operation. This scheme gives the smallest error in the implementation of universal Gaussian transformations. The use of such a scheme made it possible to reduce the oscillator squeezing threshold required for the implementing of fault-tolerant quantum computation schemes close to reality to -19.25 dB.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源