论文标题

不能偷吗?续!对比窃取图像编码器的攻击

Can't Steal? Cont-Steal! Contrastive Stealing Attacks Against Image Encoders

论文作者

Sha, Zeyang, He, Xinlei, Yu, Ning, Backes, Michael, Zhang, Yang

论文摘要

自我监督的表示学习技术一直在迅速发展,以充分利用未标记的图像。它们将图像编码为涉及下游任务的丰富功能。在其革命性代表权的背后,对专用模型设计的要求和大量的计算资源使图像编码器暴露于潜在模型窃取攻击的风险 - 一种模仿训练有素的编码器性能的廉价方式,同时避免了要求的要求。然而,鉴于其预测的标签和/或后代,传统攻击仅针对监督分类器,这使得未经监督的编码器的脆弱性未经探索。 在本文中,我们首先实例化了针对编码器的常规偷窃攻击,并与下游分类器相比证明了它们更严重的脆弱性。为了更好地利用编码器的丰富表示形式,我们进一步提出了基于学习的攻击,并在各种实验环境中验证其提高其窃取效果。作为一项收获,我们呼吁社区对代表性学习技术的知识产权保护,尤其是防御反对我们像我们这样的窃取攻击的防御措施。

Self-supervised representation learning techniques have been developing rapidly to make full use of unlabeled images. They encode images into rich features that are oblivious to downstream tasks. Behind their revolutionary representation power, the requirements for dedicated model designs and a massive amount of computation resources expose image encoders to the risks of potential model stealing attacks - a cheap way to mimic the well-trained encoder performance while circumventing the demanding requirements. Yet conventional attacks only target supervised classifiers given their predicted labels and/or posteriors, which leaves the vulnerability of unsupervised encoders unexplored. In this paper, we first instantiate the conventional stealing attacks against encoders and demonstrate their severer vulnerability compared with downstream classifiers. To better leverage the rich representation of encoders, we further propose Cont-Steal, a contrastive-learning-based attack, and validate its improved stealing effectiveness in various experiment settings. As a takeaway, we appeal to our community's attention to the intellectual property protection of representation learning techniques, especially to the defenses against encoder stealing attacks like ours.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源