论文标题

跟踪发生事件的地方:流数据上的反向空间术语查询

Tracking Where Events Take Place: Reverse Spatial Term Queries on Streaming Data

论文作者

Farazi, Sara, Rafiei, Davood

论文摘要

在线用户生成的大量内容是地理标签的,这为查询各种基于位置的服务提供了丰富的来源。此类服务中的重要疑问涉及内容与位置之间的关联。在本文中,我们研究了流式传输地理标签数据的两种类型的查询:1)“ Top-K反向频繁的空间查询”,在给定术语的情况下,目标是找到术语频繁的顶级K位置,而2)“术语频率空间查询”,这是在给定位置中找到期望的期望频率。为了在流设置中有效支持这些查询,我们将术语模拟为事件,并探索一个地理分布的概率模型,该模型使我们能够估算不在流草图或摘要中的位置中的术语频率。我们研究查询效率,更新效率和结果的准确性之间的来回关系,并确定一些可以开发出高效和有效算法的甜点。我们证明我们的方法可以扩展以支持多期查询。为了评估算法的效率,我们对相对较大的地理标签推文和地理标签的Flickr照片进行了实验。评估表明,当仅给出有限的内存时,我们提出的方法就能达到很高的精度。同样,与最近的基线相比,查询时间得到了改善,数量级为2-3个,而准确性损失很大,并且在某些期限分布或更新策略下,更新时间至少可以通过数量级进一步改善。

A large volume of content generated by online users is geo-tagged and this provides a rich source for querying in various location-based services. An important class of queries within such services involves the association between content and locations. In this paper, we study two types of queries on streaming geo-tagged data: 1) "Top-k reverse frequent spatial queries", where given a term, the goal is to find top K locations where the term is frequent, and 2) "Term frequency spatial queries", which is finding the expected frequency of a term in a given location. To efficiently support these queries in a streaming setting, we model terms as events and explore a probabilistic model of geographical distribution that allows us to estimate the frequency of terms in locations that are not kept in a stream sketch or summary. We study the back-and-forth relationship between the efficiency of queries, the efficiency of updates and the accuracy of the results and identify some sweet spots where both efficient and effective algorithms can be developed. We demonstrate that our method can be extended to support multi-term queries. To evaluate the efficiency of our algorithms, we conduct experiments on a relatively large collection of both geo-tagged tweets and geo-tagged Flickr photos. The evaluation reveals that our proposed method achieves a high accuracy when only a limited amount of memory is given. Also the query time is improved, compared to a recent baseline, by 2-3 orders of magnitude without much loss in accuracy and that the update time can further be improved by at least an order of magnitude under some term distributions or update strategies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源