论文标题
学习元量表的张量表示
Learning Tensor Representations for Meta-Learning
论文作者
论文摘要
我们介绍了一种基于张量的共享表示模型,用于从各种任务集中进行元学习。用于学习元学习线性表示形式的先前工作假设在不同任务之间存在共同的共享表示形式,并且不考虑其他特定于任务的可观察侧面信息。在这项工作中,我们通过订单-3 $张量对元参数进行建模,该订单可以适应任务的观察到的任务功能。我们提出了两种估计潜在张量的方法。第一种方法解决了张量回归问题,并在数据生成过程的自然假设下起作用。第二种方法在其他分布假设下使用矩的方法,并且在任务数量方面具有改善的样本复杂性。 我们还专注于元测试阶段,并考虑在新任务上估算特定于任务的参数。从第一步替换估计的张量可以使我们估计特定于任务的参数,但很少有新任务的样本,从而显示了学习张量表示元学习的好处。最后,通过仿真和几个现实世界数据集,我们评估了我们的方法,并表明它比以前共享表示形式的线性模型改进了元学习。
We introduce a tensor-based model of shared representation for meta-learning from a diverse set of tasks. Prior works on learning linear representations for meta-learning assume that there is a common shared representation across different tasks, and do not consider the additional task-specific observable side information. In this work, we model the meta-parameter through an order-$3$ tensor, which can adapt to the observed task features of the task. We propose two methods to estimate the underlying tensor. The first method solves a tensor regression problem and works under natural assumptions on the data generating process. The second method uses the method of moments under additional distributional assumptions and has an improved sample complexity in terms of the number of tasks. We also focus on the meta-test phase, and consider estimating task-specific parameters on a new task. Substituting the estimated tensor from the first step allows us estimating the task-specific parameters with very few samples of the new task, thereby showing the benefits of learning tensor representations for meta-learning. Finally, through simulation and several real-world datasets, we evaluate our methods and show that it improves over previous linear models of shared representations for meta-learning.