论文标题
在不同的字符度上
On Distinct Character Degrees
论文作者
论文摘要
伯科维奇(Berkovich),奇拉格(Chillag)和赫尔佐格(Herzog)表征了所有有限的$ g $,其中$ g $的所有非线性不可约字符均具有独特的学位。在本文中,我们扩展了此结果,表明所有有限可解的$ g $都具有类似的特征,其中包含一个普通的亚组$ n $,因此所有不包含$ n $内核中不包含$ n $的不可约字符的字符都具有独特的度。
Berkovich, Chillag and Herzog characterized all finite groups $G$ in which all the nonlinear irreducible characters of $G$ have distinct degrees. In this paper we extend this result showing that a similar characterization holds for all finite solvable groups $G$ that contain a normal subgroup $N$, such that all the irreducible characters of $G$ that do not contain $N$ in their kernel have distinct degrees.