论文标题

perid骨压力是静态的第一piola-kirchhoff病毒应力

Peridynamic stress is the static first Piola-Kirchhoff Virial stress

论文作者

Li, Jun, Li, Shaofan, Lai, Xin, Liu, Lisheng

论文摘要

Lehoucq和Silling [1,2]提出的Peridyanic应力公式是在数值计算中实现的繁琐。在这里,我们表明,植物性压力张量具有精确的数学表达,就像第一个Piola-Kirchhoff静态病毒应力源自Irving-Kirkwood-Noll形式主义[3,4],通过Hardy-Murdoch过程[5,6],该过程提供了简单而清晰的渗透力量压力的表达。已经进行了几种数值验证,以验证提出的perid肌应激公式的准确性,以预测裂纹尖端附近的应激状态和其他应力浓度来源。在具有原型微弹性脆性(PMB)材料模型的基于键基的植入动力学中评估了植物性应激。发现PMB材料模型可能在大变形时表现出非线性本构行为。通过所提出的植入动力应力公式计算得出的应力场与有限元分析结果,分析溶液和实验数据显示了良好的协议,这表明了衍生的植入动力应力公式在模拟不连续性问题的应力状态,尤其是在基于键的粘结性动力学方面具有有希望的潜力。

The peridynamic stress formula proposed by Lehoucq and Silling [1, 2] is cumbersome to be implemented in numerical computations. Here, we show that the peridynamic stress tensor has the exact mathematical expression as that of the first Piola-Kirchhoff static Virial stress originated from Irving-Kirkwood-Noll formalism [3, 4] through the Hardy-Murdoch procedure [5, 6], which offers a simple and clear expression for numerical calculations of peridynamic stress. Several numerical verifications have been carried out to validate the accuracy of proposed peridynamic stress formula in predicting the stress states in the vicinity of the crack tip and other sources of stress concentration. The peridynamic stress is evaluated within the bond-based peridynamics with prototype microelastic brittle (PMB) material model. It is found that the PMB material model may exhibit nonlinear constitutive behaviors at large deformations. The stress fields calculated through the proposed peridynamic stress formula show good agreements with finite element analysis results, analytical solutions, and experimental data, demonstrating the promising potential of derived peridynamic stress formula in simulating the stress states of problems with discontinuities, especially in the bond-based peridynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源