论文标题
替代辅助分布式群体优化计算昂贵的地球科学模型
Surrogate-assisted distributed swarm optimisation for computationally expensive geoscientific models
论文作者
论文摘要
进化算法提供了无梯度优化,这对难以获得梯度的模型有益;例如,地球科学景观演化模型。但是,这种模型有时在计算上昂贵,甚至基于分布的基于平行的计算斗争的优化。我们可以纳入有效的策略,例如替代辅助优化,以应对挑战;但是,很难为基于替代的模型培训实施过程间通信。在本文中,我们在平行计算体系结构上实施了基于替代物的健身评估估计。我们首先在一组基准优化问题上测试框架,然后将其应用于具有景观演化模型的地球科学模型。我们的结果表明,基准功能和荒地景观演化模型非常有希望的结果。我们通过在平行计算环境中使用替代物来保留优化解决方案精度,从而减少了计算时间。该论文的主要贡献是对地球科学模型的基于替代物的优化应用,这将来可能有助于更好地理解古气候和地貌。
Evolutionary algorithms provide gradient-free optimisation which is beneficial for models that have difficulty in obtaining gradients; for instance, geoscientific landscape evolution models. However, such models are at times computationally expensive and even distributed swarm-based optimisation with parallel computing struggles. We can incorporate efficient strategies such as surrogate-assisted optimisation to address the challenges; however, implementing inter-process communication for surrogate-based model training is difficult. In this paper, we implement surrogate-based estimation of fitness evaluation in distributed swarm optimisation over a parallel computing architecture. We first test the framework on a set of benchmark optimisation problems and then apply it to a geoscientific model that features a landscape evolution model. Our results demonstrate very promising results for benchmark functions and the Badlands landscape evolution model. We obtain a reduction in computational time while retaining optimisation solution accuracy through the use of surrogates in a parallel computing environment. The major contribution of the paper is in the application of surrogate-based optimisation for geoscientific models which can in the future help in a better understanding of paleoclimate and geomorphology.