论文标题
视网膜处理:数学建模的见解
Retinal processing: insights from mathematical modelling
论文作者
论文摘要
视网膜是视觉系统的入口。尽管基于常见的生物物理原理,但视网膜神经元的动力学与皮质对应物完全不同,这给模块化带来了有趣的问题。在本文中,我以这种精神解决了一些数学上指定的问题,特别是:(1)横向无链无织线细胞连通性如何塑造视网膜神经节细胞的时空峰值响应? (2)时空刺激的相关性和视网膜网络动力学如何塑造视网膜输出处的尖峰训练相关性?首先解决了这些问题,该问题引入了层状视网膜的数学上可拖动模型,整合了无长束细胞的横向连通性和分段线性整流,从而使视网膜神经节细胞与电压和尖峰的视网膜神经节感受在一起,从而计算了来自amprine细胞网络产生的视网膜神经节细胞的尖峰相关性。然后,我回顾了一些最近的结果,显示了时空吉布斯分布的概念和线性响应理论如何用于表征一组视网膜神经节细胞的时空刺激的集体尖峰响应,从而通过与amacrine细胞网络相对应的有效相互作用来耦合。在这些基础上,我简要讨论了这些结果在皮质水平上的一些潜在后果。
The retina is the entrance of the visual system. Although based on common biophysical principles the dynamics of retinal neurons is quite different from their cortical counterparts, raising interesting problems for modellers. In this paper I address some mathematically stated questions in this spirit, discussing, in particular: (1) How could lateral amacrine cell connectivity shape the spatio-temporal spike response of retinal ganglion cells ? (2) How could spatio-temporal stimuli correlations and retinal network dynamics shape the spike train correlations at the output of the retina ? These questions are addressed, first, introducing a mathematically tractable model of the layered retina, integrating amacrine cells lateral connectivity and piecewise linear rectification, allowing to compute the retinal ganglion cells receptive field together with the voltage and spike correlations of retinal ganglion cells resulting from the amacrine cells networks. Then, I review some recent results showing how the concept of spatio-temporal Gibbs distributions and linear response theory can be used to characterize the collective spike response to a spatio-temporal stimulus of a set of retinal ganglion cells, coupled via effective interactions corresponding to the amacrine cells network. On these bases, I briefly discuss several potential consequences of these results at the cortical level.