论文标题

计算最长(常见)林登子序列

Computing Longest (Common) Lyndon Subsequences

论文作者

Bannai, Hideo, I, Tomohiro, Kociumaka, Tomasz, Köppl, Dominik, Puglisi, Simon J.

论文摘要

给定一个带有长度$ n $的字符串$ t $,其字符是从大小$σ$的有序字母中绘制的,其最长的Lyndon子序列是$ t $的最长子序列,这是一个Lyndon Word。我们提出算法,以$ O(n^3)$(n)$ space或在$ o(n^3σ)$时空和时间在线查找$ O(n^3)$时间。我们可以使用$ O(n^3)$ space的两个长度$ n $ in $ o(n^4σ)$ time的长度$ n $ in $ o(n^4σ)$ time的长度$ n $的最长的林登子序列进行扩展。

Given a string $T$ with length $n$ whose characters are drawn from an ordered alphabet of size $σ$, its longest Lyndon subsequence is a longest subsequence of $T$ that is a Lyndon word. We propose algorithms for finding such a subsequence in $O(n^3)$ time with $O(n)$ space, or online in $O(n^3 σ)$ space and time. Our first result can be extended to find the longest common Lyndon subsequence of two strings of length $n$ in $O(n^4 σ)$ time using $O(n^3)$ space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源