论文标题

单细胞多摩学集成和对齐方式的计算方法

Computational Methods for Single-Cell Multi-Omics Integration and Alignment

论文作者

Stanojevic, Stefan, Li, Yijun, Garmire, Lana X.

论文摘要

最近开发的技术来生成单细胞基因组数据,对生物学领域产生了革命性的影响。多摩斯分析提供了更多的机会来了解细胞状态和生物学过程。但是,将不同的数据与维度和统计属性截然不同的问题集成的问题仍然很具有挑战性。为这项任务开发了越来越多的计算工具,利用从机器翻译到网络理论以及代表生物学和数据科学界面的新边界的想法。我们在本文本文中的目标是对单个细胞研究领域中多词的整合以及多种基因组数据模式的对齐方式进行全面,最新的计算技术调查。

Recently developed technologies to generate single-cell genomic data have made a revolutionary impact in the field of biology. Multi-omics assays offer even greater opportunities to understand cellular states and biological processes. However, the problem of integrating different -omics data with very different dimensionality and statistical properties remains quite challenging. A growing body of computational tools are being developed for this task, leveraging ideas ranging from machine translation to the theory of networks and representing a new frontier on the interface of biology and data science. Our goal in this review paper is to provide a comprehensive, up-to-date survey of computational techniques for the integration of multi-omics and alignment of multiple modalities of genomics data in the single cell research field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源