论文标题
动量空间中的节点线:光子和其他系统中的拓扑不变性和最新实现
Nodal lines in momentum space: topological invariants and recent realizations in photonic and other systems
论文作者
论文摘要
拓扑绝缘子构成了现代冷凝物质理论中最有趣的现象之一。物质拓扑状态的独特和外来特性允许单向无间隙电子传输以及对霍尔电导率的极为准确的测量。最近,使用光子和语音晶体,超材料和电路等人造材料,更好地理解了在Dirac/Weyl点处发生的新拓扑作用。相比之下,在动量空间中是一维脱落的淋巴结线的拓扑特性,探索的探索程度较低。在这里,我们解释了拓扑结节线的理论概念,并使用人工材料回顾了最近和持续的进展。该综述包括在动量空间中对淋巴结线的非亚洲拓扑充电的最新演示以及在光子和其他系统中实现的节点线的示例。最后,我们将解决拓扑结节线的实验演示和理论理解所涉及的挑战。
Topological insulators constitute one of the most intriguing phenomena in modern condensed matter theory. The unique and exotic properties of topological states of matter allow for unidirectional gapless electron transport and extremely accurate measurements of the Hall conductivity. Recently, new topological effects occurring at Dirac/Weyl points have been better understood and demonstrated using artificial materials such as photonic and phononic crystals, metamaterials and electrical circuits. In comparison, the topological properties of nodal lines, which are one-dimensional degeneracies in momentum space, remain less explored. Here, we explain the theoretical concept of topological nodal lines and review recent and ongoing progress using artificial materials. The review includes recent demonstrations of non-Abelian topological charges of nodal lines in momentum space and examples of nodal lines realized in photonic and other systems. Finally, we will address the challenges involved in both experimental demonstration and theoretical understanding of topological nodal lines.