论文标题
使用机器学习来参数从二进制中子星来参数postmerger信号
Using machine learning to parametrize postmerger signals from binary neutron stars
论文作者
论文摘要
对二进制中子星后振荡的重力波的检测和表征的检测和表征越来越兴趣。这些信号包含有关残留物质的性质以及邮政过程的高密度和非平衡物理的信息,这将补充任何电磁信号。但是,与二进制黑洞相比,二进制中性恒星邮递波形的构建要复杂得多:(i)在状态和其他方面的中子星方程和高密度物理学的其他方面存在理论上的不确定性,(ii)数值模拟昂贵,并且可用的数值仅覆盖有限的数字和(III III)的一小部分参数,它是III和(III)的一小部分。跨参数空间插值。在这项工作中,我们描述了一种称为条件变异自动编码器(CVAE)的机器学习方法的用法来构建基于数值 - 浮力仿真的超级/大型中子星形残留信号的postmerger模型。 CVAE提供了一个概率模型,该模型在一组潜在参数中编码训练数据中的不确定性。我们估计培训这种模型最终将需要$ \ sim 10^4 $波形。但是,使用合成训练波形作为原理证明,我们表明CVAE可以用作准确的生成模型,并且它在有用的潜在表示中编码状态方程。
There is growing interest in the detection and characterization of gravitational waves from postmerger oscillations of binary neutron stars. These signals contain information about the nature of the remnant and the high-density and out-of-equilibrium physics of the postmerger processes, which would complement any electromagnetic signal. However, the construction of binary neutron star postmerger waveforms is much more complicated than for binary black holes: (i) there are theoretical uncertainties in the neutron-star equation of state and other aspects of the high-density physics, (ii) numerical simulations are expensive and available ones only cover a small fraction of the parameter space with limited numerical accuracy, and (iii) it is unclear how to parametrize the theoretical uncertainties and interpolate across parameter space. In this work, we describe the use of a machine-learning method called a conditional variational autoencoder (CVAE) to construct postmerger models for hyper/massive neutron star remnant signals based on numerical-relativity simulations. The CVAE provides a probabilistic model, which encodes uncertainties in the training data within a set of latent parameters. We estimate that training such a model will ultimately require $\sim 10^4$ waveforms. However, using synthetic training waveforms as a proof-of-principle, we show that the CVAE can be used as an accurate generative model and that it encodes the equation of state in a useful latent representation.