论文标题

源自本征态热假说的优先基础

Preferred basis derived from eigenstate thermalization hypothesis

论文作者

Yan, Hua, Wang, Jiaozi, Wang, Wen-ge

论文摘要

我们研究了$ M $级中央系统的降低密度矩阵(RDM)的长时间平均值,该系统在总体系统的整体施罗丁格演化下,该平均值与局部耦合到大环境。我们考虑了一类相互作用的哈密顿量,其环境部分满足所谓的特征态热假说(ETH)ANSATZ,在有关能量区域中具有恒定的对角线部分。在中央系统的Hamiltonian的特征性上,派生了平均RDM元素之间的关系。当存在稳态时,这些关系意味着由重新归一化的哈密顿人给出的优先基础,其中包括系统 - 环境相互作用的一定平均影响。对与缺陷链链耦合的量子轴进行的数值模拟符合分析预测。

We study the long-time average of the reduced density matrix (RDM) of an $m$-level central system, which is locally coupled to a large environment, under an overall Schrödinger evolution of the total system. We consider a class of interaction Hamiltonian, whose environmental part satisfies the so-called eigenstate thermalization hypothesis (ETH) ansatz with a constant diagonal part in the energy region concerned. On the eigenbasis of the central system's Hamiltonian, $\frac{1}{2}(m-1)(m+2)$ relations among elements of the averaged RDM are derived. When steady states exist, these relations imply the existence of a preferred basis, given by a renormalized Hamiltonian that includes certain averaged impact of the system-environment interaction. Numerical simulations performed for a qubit coupled to a defect Ising chain conform the analytical predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源