论文标题

基于学习的散射扭曲光的多路复用传播通过公里尺度的标准多模纤维

Learning-based multiplexed transmission of scattered twisted light through a kilometer-scale standard multimode fiber

论文作者

Liu, Yifan, Zhang, Zhisen, Yu, Panpan, Wu, Yijing, Wang, Ziqiang, Li, Yinmei, Liu, Wen, Gong, Lei

论文摘要

多路复用多轨道角动量(OAM)的光模式具有增加光学通信中数据能力的潜力。但是,这种模式在长距离上的分布仍然具有挑战性。自由空间的传播受大气湍流和光散射的强烈影响,而纤维中的模式分散引起的波浪失真使纤维传动中的OAM反复交流。在此,开发了一种基于深度学习的方法来从散布的OAM通道中恢复数据,而无需测量任何阶段信息。在1公里长的标准多模纤维上,该方法能够在24个散射的OAM通道的并行反复反复分解中识别不同的OAM模式,其精度超过99.9%。为了证明传输质量,颜色图像以多路复用的扭曲光编码,我们的方法以0.13%的错误率来解码传输数据。我们的工作表明,人工智能算法可以使商业纤维网络中的OAM多路复用和在动荡环境中的高性能光通信中受益。

Multiplexing multiple orbital angular momentum (OAM) modes of light has the potential to increase data capacity in optical communication. However, the distribution of such modes over long distances remains challenging. Free-space transmission is strongly influenced by atmospheric turbulence and light scattering, while the wave distortion induced by the mode dispersion in fibers disables OAM demultiplexing in fiber-optic communications. Here, a deep-learning-based approach is developed to recover the data from scattered OAM channels without measuring any phase information. Over a 1-km-long standard multimode fiber, the method is able to identify different OAM modes with an accuracy of more than 99.9% in parallel demultiplexing of 24 scattered OAM channels. To demonstrate the transmission quality, color images are encoded in multiplexed twisted light and our method achieves decoding the transmitted data with an error rate of 0.13%. Our work shows the artificial intelligence algorithm could benefit the use of OAM multiplexing in commercial fiber networks and high-performance optical communication in turbulent environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源