论文标题

量子场理论中的纠缠通过小波表示

Entanglement in quantum field theory via wavelet representations

论文作者

George, Daniel J., Sanders, Yuval R., Bagherimehrab, Mohsen, Sanders, Barry C., Brennen, Gavin K.

论文摘要

量子场理论(QFT)使用连续场描述了性质,但是QFT的物理特性通常是根据有限分辨率的可观察物的测量来揭示的。我们描述了使用小波的自由标量验证和ISING模型费米QFT的多尺度表示。利用小波基函数的正交性和自我相似性,我们展示了一些众所周知的关系,例如规模依赖的子系统纠缠熵和基础状态相关性的重新归一化。我们还发现小波变换的一些新应用是QFTS基态的压缩表示,可用于通过保真性重叠和全息纯化来说明量子相变。

Quantum field theory (QFT) describes nature using continuous fields, but physical properties of QFT are usually revealed in terms of measurements of observables at a finite resolution. We describe a multiscale representation of a free scalar bosonic and Ising model fermionic QFTs using wavelets. Making use of the orthogonality and self similarity of the wavelet basis functions, we demonstrate some well known relations such as scale dependent subsystem entanglement entropy and renormalization of correlations in the ground state. We also find some new applications of the wavelet transform as a compressed representation of ground states of QFTs which can be used to illustrate quantum phase transitions via fidelity overlap and holographic entanglement of purification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源