论文标题

深度卷积神经网络使用级别的方法进行形状优化

Deep convolutional neural network for shape optimization using level-set approach

论文作者

Mallik, Wrik, Farvolden, Neil, Jelovica, Jasmin, Jaiman, Rajeev K.

论文摘要

本文通过深层卷积神经网络(CNN)介绍了减少阶的建模方法,以实现形状优化应用。 CNN提供了形状及其相关属性之间的非线性映射,同时保留了这些属性与形状翻译的质量映射。为了通过CNN可施加的笛卡尔结构网格隐式表示复杂的形状,采用了一种级别的方法。基于CNN的还原模型(ROM)以完全数据驱动的方式构建,因此非常适合非侵入性应用程序。我们在基于梯度的三维形状优化问题上演示了基于ROM的形状优化框架,以最大程度地减少低保真电势流中机翼的诱导阻力。我们显示了基于ROM的最佳空气动力系数与通过潜在流量求解器获得的对应物之间的良好一致性。优化形状的预测行为与理论预测一致。我们还以物理上可解释的方式介绍了深CNN模型的学习机制。与基于全阶模型的在线优化应用程序相比,基于CNN-ROM的形状优化算法具有显着的计算效率。提出的算法有望开发一个可拖动的DL-ROM驱动框架,以进行形状优化和自适应变形结构。

This article presents a reduced-order modeling methodology via deep convolutional neural networks (CNNs) for shape optimization applications. The CNN provides a nonlinear mapping between the shapes and their associated attributes while conserving the equivariance of these attributes to the shape translations. To implicitly represent complex shapes via a CNN-applicable Cartesian structured grid, a level-set method is employed. The CNN-based reduced-order model (ROM) is constructed in a completely data-driven manner thus well suited for non-intrusive applications. We demonstrate our ROM-based shape optimization framework on a gradient-based three-dimensional shape optimization problem to minimize the induced drag of a wing in low-fidelity potential flow. We show a good agreement between ROM-based optimal aerodynamic coefficients and their counterparts obtained via a potential flow solver. The predicted behavior of the optimized shape is consistent with theoretical predictions. We also present the learning mechanism of the deep CNN model in a physically interpretable manner. The CNN-ROM-based shape optimization algorithm exhibits significant computational efficiency compared to the full-order model-based online optimization applications. The proposed algorithm promises to develop a tractable DL-ROM-driven framework for shape optimization and adaptive morphing structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源