论文标题
少做更多的事情:克服数据稀缺性通过跨区域转移推荐POI
Doing More with Less: Overcoming Data Scarcity for POI Recommendation via Cross-Region Transfer
论文作者
论文摘要
各个区域的社交应用程序使用变异性会导致收集的签入数据的数量和质量很高,这反过来又是有效位置建议系统的挑战。在本文中,我们介绍了Axolotl(自动跨位置网络转移学习),这是一种旨在转移数据富含数据区域的位置偏好模型的新方法,可显着提高数据筛分区域中的建议质量。 Axolotl主要部署两个渠道以进行信息传输,(1)使用位置建议和社交预测学习的基于元学习的程序,以及(2)轻巧无监督的基于群集的转移,跨用户和相似偏好的位置。这两者都协同起作用,以提高数据筛选区域的建议准确性,而没有任何重叠用户的先决条件,并且微调最少。我们在双图研究神经网络模型的顶部构建Axolotl,用于捕获每个区域的用户摩托图中的用户和位置条件影响。我们对美国,日本和德国的12个用户移动数据集进行了广泛的实验,使用3个作为源区域,其中9个作为目标区域(记录了很少记录的移动性数据)。从经验上讲,我们表明,与所有指标的现有最新方法相比,Axolotl的推荐性能最高多达18%。
Variability in social app usage across regions results in a high skew of the quantity and the quality of check-in data collected, which in turn is a challenge for effective location recommender systems. In this paper, we present Axolotl (Automated cross Location-network Transfer Learning), a novel method aimed at transferring location preference models learned in a data-rich region to significantly boost the quality of recommendations in a data-scarce region. Axolotl predominantly deploys two channels for information transfer, (1) a meta-learning based procedure learned using location recommendation as well as social predictions, and (2) a lightweight unsupervised cluster-based transfer across users and locations with similar preferences. Both of these work together synergistically to achieve improved accuracy of recommendations in data-scarce regions without any prerequisite of overlapping users and with minimal fine-tuning. We build Axolotl on top of a twin graph-attention neural network model used for capturing the user- and location-conditioned influences in a user-mobility graph for each region. We conduct extensive experiments on 12 user mobility datasets across the U.S., Japan, and Germany, using 3 as source regions and 9 of them (that have much sparsely recorded mobility data) as target regions. Empirically, we show that Axolotl achieves up to 18% better recommendation performance than the existing state-of-the-art methods across all metrics.